

BPC 157+TB500

Mechanism of Action

US Peptide Co

Research Applications

This research blend combines BPC 157 and TB-500, two peptides with distinct but complementary mechanisms. BPC 157 interacts with the NO system and modulates growth factor expression, while TB-500 regulates actin polymerization and cell migration. In research models, this combination has demonstrated potential for studying synergistic effects on tissue regeneration pathways, cytoskeletal organization, and cellular repair mechanisms.

Molecular Profile

- Components: BPC 157 (1,419.6 Da) + TB-500 (1,012.2 Da)
- Sequence BPC 157: Gly-Glu-Pro-Pro-Pro-Gly-Lys-Pro-Ala-Asp-Asp-Ala-Gly-Leu-Val
- Sequence TB-500: Ac-SDKP-Thr-Beta-Ala-CONH₂

Laboratory Considerations

- Store lyophilized powder at -20°C
- Once reconstituted store at 4°C
- Avoid repeated freeze-thaw cycles

Research Applications

- Synergistic tissue regeneration pathway research
- Investigation of combined effects on angiogenesis mechanisms
- Models examining complementary cellular repair processes
- Research on inflammatory modulation and growth factor expression

References

- 1. Seiwerth S, et al. BPC 157 and standard angiogenic growth factors. Gastrointestinal tract healing, lessons from tendon, ligament, muscle and bone healing. Curr Pharm Des. 2018;24(18):1972-1989.
- 2. Goldstein AL, et al. Thymosin β_4 : a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12(1):37-51.
- 3. Chang CH, et al. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration. J Appl Physiol. 2011;110(3):774-780.
- 4. Philp D, et al. Thymosin $\beta 4$ and angiogenesis: modes of action and therapeutic potential. Angiogenesis. 2004;7(3):195-201.